Science Virtual Learning

MPI Physics 210

Thermodynamics 3: Thermal Expansion of Solids

May 11, 2020

Lesson: MPI Thermodynamics 3 - Thermal Expansion of Solids May 11, 2020

Objective: To understand how solids expand when their temperature is increased

This video discusses how solids expand when their temperature is raised, or contract when the temperature is lowered.

https://youtu.be/DMDCrfiJaqk

Video: Thermal Expansion of Solids

This video works out two examples using thermal expansion. See the following slides for a text version of the examples

https://youtu.be/V6F5oNnHBIk

Video: Thermal Expansion Examples

An aluminum thermos has a diameter of 8.00 cm and a volume of 0.700 L at $20.0^{\circ} \mathrm{C}$. It is then filled with coffee at $92.0^{\circ} \mathrm{C}$. How much does the diameter increase? How much does the volume increase?

Expansion of Solids Example 1

A 0.010-m long steel screw and a $0.030-\mathrm{m}$ long brass screw are arranged so that their ends are only $5.0 \mu \mathrm{~m}$ apart at $27^{\circ} \mathrm{C}$; see diagram. As you raise the temperature, the screws expand, closing the gap between them. At what temperature will the ends of the screws touch?

Expansion of Solids Example 2

Figure 18.10 (Example 18.3) Two bolts attached to different parts of an electrical device are almost touching when the temperature is $27^{\circ} \mathrm{C}$. As the temperature increases, the ends of the bolts move toward each other.

1. The Golden Gate Bridge is 1280 m long, and the structure is made of steel. By how much does the length of the bridge expand when the temperature increases from $5.0^{\circ} \mathrm{C}$ to $27.0^{\circ} \mathrm{C}$?

- Try to solve the problem yourself, then watch the solution video:
- https://youtu.be/ze HKcrYrtE

2. A common demonstration of thermal expansion is the "ring and ball". At $20.0^{\circ} \mathrm{C}$, the inner diameter of the ring is 20.0 mm , while the ball is slightly larger, at 20.1 mm . To what temperature must you heat the ring so that its diameter increases to 20.1 mm , so that the ball can fit through?

- Try to solve the problem yourself, then watch the solution video:
- https://youtu.be/6T7uDpAl15Y

That's it!

